Extensions 1→N→G→Q→1 with N=C2 and Q=C22.D4

Direct product G=N×Q with N=C2 and Q=C22.D4
dρLabelID
C2×C22.D432C2xC2^2.D464,205


Non-split extensions G=N.Q with N=C2 and Q=C22.D4
extensionφ:Q→Aut NdρLabelID
C2.1(C22.D4) = C23.34D4central extension (φ=1)32C2.1(C2^2.D4)64,62
C2.2(C22.D4) = C23.8Q8central extension (φ=1)32C2.2(C2^2.D4)64,66
C2.3(C22.D4) = C23.23D4central extension (φ=1)32C2.3(C2^2.D4)64,67
C2.4(C22.D4) = C23.63C23central extension (φ=1)64C2.4(C2^2.D4)64,68
C2.5(C22.D4) = C24.C22central extension (φ=1)32C2.5(C2^2.D4)64,69
C2.6(C22.D4) = C23.10D4central stem extension (φ=1)32C2.6(C2^2.D4)64,75
C2.7(C22.D4) = C23.11D4central stem extension (φ=1)32C2.7(C2^2.D4)64,78
C2.8(C22.D4) = C23.81C23central stem extension (φ=1)64C2.8(C2^2.D4)64,79
C2.9(C22.D4) = C23.4Q8central stem extension (φ=1)32C2.9(C2^2.D4)64,80
C2.10(C22.D4) = C23.83C23central stem extension (φ=1)64C2.10(C2^2.D4)64,81
C2.11(C22.D4) = C22.D8central stem extension (φ=1)32C2.11(C2^2.D4)64,161
C2.12(C22.D4) = C23.46D4central stem extension (φ=1)32C2.12(C2^2.D4)64,162
C2.13(C22.D4) = C23.19D4central stem extension (φ=1)32C2.13(C2^2.D4)64,163
C2.14(C22.D4) = C23.47D4central stem extension (φ=1)32C2.14(C2^2.D4)64,164
C2.15(C22.D4) = C23.48D4central stem extension (φ=1)32C2.15(C2^2.D4)64,165
C2.16(C22.D4) = C23.20D4central stem extension (φ=1)32C2.16(C2^2.D4)64,166

׿
×
𝔽